martes, 11 de febrero de 2014

PRINCIPIO FUNDAMENTAL DE CONTEO

¿QUE ES LA TEORÍA DE CONJUNTOS?
El concepto de conjunto. Conocer distintas formas de expresar los conjuntos. Definir el concepto de
subconjunto. Definir las operaciones de, unión, intersección y diferencia de conjuntos. Definir la cardinalidad de un conjunto. Definir los conjuntos numéricos: Naturales, Cardinales, Enteros,
Racionales, Irracionales y los Reales.
 Es agrupar objetos, por ejemplo un conjunto de discos, de libros, de plantas de cultivo y en otras ocasiones en palabras como hato, rebaño, piara, parcelas, campesino, familia, etc., es decir la palabra conjunto denota una colección de elementos claramente entre sí, que guardan alguna característica en común. Ya sean números, personas, figuras, ideas y conceptos.
     Los objetos que forman un conjunto son llamados miembros o elementos. Por ejemplo el conjunto de las letras de alfabeto; a, b, c, ..., x, y, z. que se puede escribir así:
{ a, b, c, ..., x, y, z}
Dos conjuntos son iguales si tienen los mismos elementos, por ejemplo:
El conjunto { a, b, c } también puede escribirse:
{ a, c, b }, { b, a, c }, { b, c, a }, { c, a, b }, { c, b, a }

En teoría de conjuntos se acostumbra no repetir a los elementos por ejemplo:

El conjunto { b, b, b, d, d } simplemente será { b, d }.

Conceptos básicos de la Teoría de Conjuntos.
Son dos los conceptos básicos de la Teoría de Conjuntos:
  1.  Conjunto: Colección de cualquier tipo de objetos considerada como un todo, una multiplicidad vista como unidad; entidad completa bien determinada. 
  2. Los objetos que forman al conjunto son nombrados elementos del conjunto o miembros del conjunto. 
  3. Por colección entenderemos a una agrupación que está determinada por una propiedad enunciada por medio de un lenguaje preciso. 
  4. Todo conjunto es una colección de objetos, pero no toda colección de objetos es un conjunto. Esta afirmación será demostrada más adelante. 
  5. Relación de Pertenencia: El ser elemento de es una relación binaria o de dos argumentos entre dos objetos de la Teoría de Conjuntos.
  6. Esta relación va de un objeto a otro, donde el segundo objeto es necesaria mente un conjunto y el primero puede ser o no un conjunto.

UNION
La unión de dos conjuntos A y B la denotaremos por A È B y es el conjunto formado por los elementos que pertenecen al menos a uno de ellos ó a los dos. Lo que se denota por:
È B = { x/x Î A ó x Î B }

Ejemplo: Sean los conjuntos A={ 1, 3, 5, 7, 9 } y B={ 10, 11, 12 }
È B ={ 1, 3, 5, 7, 9, 10, 11, 12 }

INTERSECCIÓNSean A={ 1, 2, 3, 4, 5, 6, 8, 9 } y B={ 2, 4, 8, 12 }
Los elementos comunes a los dos conjuntos son: { 2, 4, 8 }. A este conjunto se le llama intersección de A y B; y se denota por A Ç B, algebraicamente se escribe así:
A Ç B = { x/x Î A y x Î B }
Y se lee el conjunto de elementos x que están en A y están en B.

Ejemplo:
Sean Q={ a, n, p, y, q, s, r, o, b, k } y P={ l, u, a, o, s, r, b, v, y, z }
Ç P={ a, b, o, r, s, y }

CONJUNTO VACIO: Un conjunto que no tiene elementos es llamado conjunto vacío ó conjunto nulo lo que denotamos por el símbolo Æ .

Por ejemplo:
Sean A={ 2, 4, 6 } y B={ 1, 3, 5, 7 } encontrar A Ç B.
Ç B= { }
El resultado de A Ç B= { } muestra que no hay elementos entre las llaves, si este es el caso se le llamará conjunto vacío ó nulo y se puede representar como:
Ç B=Æ

CONJUNTOS AJENOS: Sí la intersección de dos conjuntos es igual al conjunto vacío, entonces a estos conjuntos les llamaremos conjuntos ajenos, es decir:
Si A Ç B = Æ entonces A y B son ajenos.

COMPLEMENTO: El complemento de un conjunto respecto al universo U es el conjunto de elementos de U que no pertenecen a A y se denota como A' y que se representa por comprehensión como:
A'={ x Î U/x y x Ï A }

DIFERENCIASean A y B dos conjuntos. La diferencia de A y B se denota por A-B y es el conjunto de los elementos de A que no están en B y se representa por comprehensión como:
A - B={ x/x Î A ; X Ï B }
Ejemplo:
Sea A= { a, b, c, d } y
B= { a, b, c, g, h, i }
A - B= { d }

PROBLEMAS DE PRINCIPIO FUNDAMENTAL DEL CONTEO.


Ejemplo: en el experimento "lanzar un dado de seis caras" sean los eventos:

A = sale par, B = sale primo. 

El evento "A ó B" = A  B : "sale par o primo" se describe:

Si E es un conjunto de n elementos y A un subconjunto de k elementos, entonces 
P(A) = k/n, concordando con la definición de las probabilidades.


problema 2°
¿Cuántos números de seis cifras hay que no tienen sus dígitos repetidos ?
Solución:
Tenemos seis espacios a llenar _ _ _ _ _ _ . En el primero, tenemos 9 opciones, porque no podemos poner al cero. En la segunda posición también tenemos 9 opciones, porque, aunque ya no podemos usar el numero que escogimos antes, ahora si podemos usar el cero. Para la tercera posición tenemos 8 opciones (de los 10 dígitos, ya usamos dos), para la cuarta posición hay 7 opciones, para la quinta 6 y para la ultima 5. En total hay 9 ×9×8×7×6×5= 136080 números de seis cifras sin dígitos repetidos.
Aunque los principios básicos de conteo pueden usarse en la gran mayoría de los casos, usualmente hay formulas(basadas en esos principios) que nos permiten hacer los cálculos de manera más rápida.


¿Que es una permutacion?
Una permutación es una combinación en donde el orden es importante. La notación para permutaciones es P(n,r) que es la cantidad de permutaciones de “n” elementos si solamente se seleccionan “r”.

Ejemplo: Si nueve estudiantes toman un examen y todos obtienen diferente calificación, cualquier alumno podría alcanzar la calificación más alta. La segunda calificación más alta podría ser obtenida por uno de los 8 restantes. La tercera calificación podría ser obtenida por uno de los 7 restantes.

Permutaciones

Hay dos tipos de permutaciones:
  1. Se permite repetir: como la cerradura de arriba, podría ser "333".
  2. Sin repetición: por ejemplo los tres primeros en una carrera. No puedes quedar primero y segundo a la vez.

1. Permutaciones con repetición

Son las más fáciles de calcular. Si tienes n cosas para elegir y eliges r de ellas, las permutaciones posibles son:
n × n × ... (r veces) = nr
(Porque hay n posibilidades para la primera elección, DESPUÉS hay n posibilidades para la segunda elección, y así.)
Por ejemplo en la cerradura de arriba, hay 10 números para elegir (0,1,...,9) y eliges 3 de ellos:
10 × 10 × ... (3 veces) = 103 = 1000 permutaciones
Así que la fórmula es simplemente:
nr
donde n es el número de cosas que puedes elegir, y eliges r de ellas
(Se puede repetir, el orden importa)

2. Permutaciones sin repetición

En este caso, se reduce el número de opciones en cada paso.
Por ejemplo, ¿cómo podrías ordenar 16 bolas de billar?
Después de elegir por ejemplo la "14" no puedes elegirla otra vez.
Así que tu primera elección tiene 16 posibilidades, y tu siguiente elección tiene 15 posibilidades, después 14, 13, etc. Y el total de permutaciones sería:
16 × 15 × 14 × 13 ... = 20,922,789,888,000
Pero a lo mejor no quieres elegirlas todas, sólo 3 de ellas, así que sería solamente:
16 × 15 × 14 = 3360
Es decir, hay 3,360 maneras diferentes de elegir 3 bolas de billar de entre 16.
¿Pero cómo lo escribimos matemáticamente? Respuesta: usamos la "función factorial"
La función factorial (símbolo: !) significa que se multiplican números descendentes. Ejemplos:
  • 4! = 4 × 3 × 2 × 1 = 24
  • 7! = 7 × 6 × 5 × 4 × 3 × 2 × 1 = 5040
  • 1! = 1
Nota: en general se está de acuerdo en que 0! = 1. Puede que parezca curioso que no multiplicar ningún número dé 1, pero ayuda a simplificar muchas ecuaciones.
Así que si quieres elegir todas las bolas de billar las permutaciones serían:
16! = 20,922,789,888,000
Pero si sólo quieres elegir 3, tienes que dejar de multiplicar después de 14. ¿Cómo lo escribimos? Hay un buen truco... dividimos entre 13!...
16 × 15 × 14 × 13 × 12 ...
= 16 × 15 × 14 = 3360
13 × 12 ...
¿Lo ves? 16! / 13! = 16 × 15 × 14
La fórmula se escribe:
donde n es el número de cosas que puedes elegir, y eliges r de ellas
(No se puede repetir, el orden importa)

Ejemplos:

Nuestro "ejemplo de elegir en orden 3 bolas de 16" sería:
16!=16!=20,922,789,888,000= 3360
(16-3)!13!6,227,020,800
¿De cuántas maneras se pueden dar primer y segundo premio entre 10 personas?
10!=10!=3,628,800= 90
(10-2)!8!40,320
(que es lo mismo que: 10 × 9 = 90)

Notación

En lugar de escribir toda la fórmula, la gente usa otras notaciones como:

PROBLEMAS DE PERMUTACIONES 

¿Cuántos números de 5 cifras diferentes se puede formar con los dígitos: 1, 2, 3, 4, 5.?
m = 5     n = 5
 entran todos los elementos. De 5 dígitos entran sólo 3.
 importa el orden. Son números distintos el 123, 231, 321.
No se repiten los elementos. El enunciado nos pide que las cifras sean diferentes.
Permutaciones
2° EJERCICIO:¿De cuántas formas pueden colocarse los 11 jugadores de un equipo de fútbol teniendo en cuenta que el portero no puede ocupar otra posición distinta que la portería?
Disponemos de 10 jugadores que pueden ocupar 10 posiciones distintas.
 entran todos los elementos.
 importa el orden.
No se repiten los elementos.
solución
3° EJERCICIO
Con las cifras 2, 2, 2, 3, 3, 3, 3, 4, 4; ¿cuántos números de nueve cifras se pueden formar?
m = 9     a = 3     b = 4     c = 2     a + b + c = 9
 entran todos los elementos
 importa el orden.
Sí se repiten los elementos.
Permutaciones con repetición

¿ QUE ES UNA COMBINACIÓN?

Combinaciones

También hay dos tipos de combinaciones (recuerda que ahora el orden no importa):
  1. Se puede repetir: como monedas en tu bolsillo (5,5,5,10,10)
  2. Sin repetición: como números de lotería (2,14,15,27,30,33)

1. Combinaciones con repetición

En realidad son las más difíciles de explicar, así que las dejamos para luego.

2. Combinaciones sin repetición

Así funciona la lotería. Los números se eligen de uno en uno, y si tienes los números de la suerte (da igual el orden) ¡entonces has ganado!
La manera más fácil de explicarlo es:
  • imaginemos que el orden sí importa (permutaciones),
  • después lo cambiamos para que el orden no importe.
Volviendo a las bolas de billar, digamos que queremos saber qué 3 bolas se eligieron, no el orden.
Ya sabemos que 3 de 16 dan 3360 permutaciones.
Pero muchas de ellas son iguales para nosotros, porque no nos importa el orden.
Por ejemplo, digamos que se tomaron las bolas 1, 2 y 3. Las posibilidades son:
El orden importaEl orden no importa
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
1 2 3
Así que las permutaciones son 6 veces más posibilidades.
De hecho hay una manera fácil de saber de cuántas maneras "1 2 3" se pueden ordenar, y ya la sabemos. La respuesta es:
3! = 3 × 2 × 1 = 6
(Otro ejemplo: 4 cosas se pueden ordenar de 4! = 4 × 3 × 2 × 1 = 24 maneras distintas, ¡prueba tú mismo!)
Así que sólo tenemos que ajustar nuestra fórmula de permutaciones para reducir por las maneras de ordenar los objetos elegidos (porque no nos interesa ordenarlos):
Esta fórmula es tan importante que normalmente se la escribe con grandes paréntesis, así:
donde n es el número de cosas que puedes elegir, y eliges r de ellas
(No se puede repetir, el orden no importa)
Y se la llama "coeficiente binomial".

Notación

Además de los "grandes paréntesis", la gente también usa estas notaciones:

Ejemplo

Entonces, nuestro ejemplo de bolas de billar (ahora sin orden) es:
16!=16!=20,922,789,888,000= 560
3!(16-3)!3!×13!6×6,227,020,800
O lo puedes hacer así:
16×15×14=3360= 560
3×2×16

Así que recuerda, haz las permutaciones, después reduce entre "r!"
... o mejor todavía...
¡Recuerda la fórmula!
Es interesante darse cuenta de que la fórmula es bonita y simétrica:
Con otras palabras, elegir 3 bolas de 16 da las mismas combinaciones que elegir 13 bolas de 16.
16!=16!=16!= 560
3!(16-3)!13!(16-13)!3!×13!

Triángulo de Pascal

Puedes usar el triángulo de Pascal para calcular valores. Baja a la fila "n" (la de arriba es n=0), y ve a la derecha "r" posiciones, ese valor es la respuesta. Aquí tienes un trozo de la fila 16:
1    14    91    364  ...
1    15    105   455   1365  ...
1    16   120   560   1820  4368  ...

1. Combinaciones con repetición

OK, ahora vamos con este...
Digamos que tenemos cinco sabores de helado: banana, chocolate, limón, fresa y vainilla. Puedes tomar 3 paladas. ¿Cuántas variaciones hay?
Vamos a usar letras para los sabores: {b, c, l, f, v}. Algunos ejemplos son
  • {c, c, c} (3 de chocolate)
  • {b, l, v} (uno de banana, uno de limón y uno de vainilla)
  • {b, v, v} (uno de banana, dos de vainilla)
(Y para dejarlo claro: hay n=5 cosas para elegir, y eliges r=3 de ellas.
El orden no importa, ¡y  puedes repetir!)
Bien, no puedo decirte directamente cómo se calcula, pero te voy a enseñar una técnica especial para que lo averigües tú mismo.
Imagina que el helado está en contenedores, podrías decir "sáltate el primero, después 3 paladas, después sáltate los 3 contenedores siguientes" ¡y acabarás con 3 paladas de chocolate!
Entonces es como si ordenaras a un robot que te trajera helado, pero no cambia nada, tendrás lo que quieres.




PROBLEMAS DE COMBINACIONES



En una clase de 35 alumnos se quiere elegir un comité formado por tres alumnos. ¿Cuántos comités diferentes se pueden formar?

Respuesta:

No entran todos los elementos.
No importa el orden: Juan, Ana.
No se repiten los elementos.
Combinaciones
A una reunión asisten 10 personas y se intercambian saludos entre todos. ¿Cuántos saludos se han intercambiado?
Respuesta:
No entran todos los elementos.
No importa el orden.
No se repiten los elementos.
solución